53 research outputs found

    A 0.2pJ/conversion-step 6-bit 200MHz flash ADC with redundancy

    Get PDF
    Comunicación presentada al "27th Conference on Design of Circuits and Integrated Systems (DCIS 2012)" celebrada del 28 al 30 de Noviembre del 2012 en Avignon (Francia), organizada por el LIRMM laboratory of Montpellier: http://www.lirmm.fr/dcis2012/index.phpIn this paper, a 200MHz 6-bit Flash analog-to-digital converter (ADC) is presented. The principal objective is to obtain a digital-friendly converter. Hence, small and simple latched comparators are used and redundancy allows reducing the offset down to an acceptable level. This obviously requires calibration but reduces power consumption, since small size transistors can be used and the unused comparators are powered down. The proposed ADC is designed in UMC 0:18m CMOS technology. Full electrical simulations show that the ADC reaches an effective number of bits (ENOB) of 5.3 associated to a signal-to-noise-anddistortion ratio (SNDR) is 33dB. The converter consumes only 1.56mW and has figure-of-merit (FoM) of 0.2 pJ / conversion step.This work has been partially funded by the Junta de Andalucia project P09-TIC-5386, the Ministerio de Economia y Competitividad project TEC2011-28302, both of them cofinanced by the FEDER program.Peer Reviewe

    On chopper effects in discrete-time ΣΔ modulators

    Get PDF
    Analog-to-digital converters based on ΣΔ modulators are used in a wide variety of applications. Due to their inherent monotonous behavior, high linearity, and large dynamic range, they are often the preferred option for sensor and instrumentation. Offset and flicker noise are usual concerns for this type of applications, and one way to minimize their effects is to use a chopper in the front-end integrator of the modulator. Due to its simple operation principle, the action of the chopper in the integrator is often overlooked. In this paper, we provide an analytical study of the static effects in ΣΔ modulators, which shows that the introduction of chopper is not transparent to the modulator operation and should thus be designed with care.This work has been partially funded by the Spanish Government project TEC-2007-68072 and the CSIC project 200850I213.Peer reviewe

    A Tissue Impedance Measurement Chip for Myocardial Ischemia Detection

    Get PDF
    In this paper, the design of a specific integrated circuit for the measurement of tissue impedances is presented. The circuit will be part of a multi-micro-sensor system intended to be used in cardiac surgery for sensing biomedical parameters in living bodies. Myocardium tissue impedance is one of these parameters which allows ischemia detection. The designed chip will be used in a four-electrode based setup where the effect of electrode interfaces are cancelled by design. The chip includes a circuit to generate the stimulus signals (sinusoidal current) and the circuitry to measure the magnitude and phase of the tissue impedance. Several integrated circuits have been designed, fabricated and tested, in a 0.8- m CMOS process, working at 3 V of power supply. Some of them including building blocks, and other with the whole measurement system. Experimental tests have shown the circuit feasibility giving expected results for both in-vitro and in-vivo test conditions

    Special session: Hot topics: Statistical test methods

    No full text
    International audienceThe process of testing Integrated Circuits involves a huge amount of data: electrical circuit measurements, information from wafer process monitors, spatial location of the dies, wafer lot numbers, etc. In addition, the relationships between faults, process variations and circuit performance are likely to be very complex and non-linear. Test (and its extension to diagnosis) should be considered as a challenging highly dimensional multivariate problem.Advanced statistical data processing offers a powerful set of tools, borrowed from the fields of data mining, machine learning or artificial intelligence, to get the most out of this data. Indeed, these mathematical tools have opened a number of novel and interesting research lines within the field of IC testing.In this special session, prominent researchers in this field will share their views on this topic and present some of their last findings. The first talk will discuss the interest of likelihood prevalence in random fault simulation. The second talk will show how statistical data analysis can help diagnosing test efficiency. The third talk will deal with the reliability of Alternate Test of AMS-RF circuits. The fourth and last talk will address the idea of mining the test data for improving design manufacturing and even test itself

    Pushing the Limits of Space Technology

    Get PDF
    Coordinators: Philippe Godignon; Gustavo Liñán.Peer reviewe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Boundary cost optimization for Alternate Test

    Get PDF
    Comunicación presentada al "ETS, 2015" celebrado en Cluj-Napoca (Rumania) del 25 al 29 de Mayo de 2015Alternate Test has demonstrated in the last decade that advanced machine-learning tools can leverage the accuracy gap between functional test and indirect, or model-based, test. If a regression approach is taken, a model should be trained for each specification. The advantage is that the results are interpreted just like performance measurements but the drawback is that accuracy is required over the full variation range. On the other hand, a classification approach can be seen as a wiser solution since it locates the pass/fail boundary, which inherently contains all the specification information, in the cheap measurement space. Cost optimization due to imbalance between test escape and yield loss is usually handled by guard-banding on specifications. This is straightforward to translate to regression-based Alternate Test but not for classification-based. This paper shows that two different asymmetric approaches consistently outperforms an off-the-shelf symmetric algorithm. The first technique is based on manipulating the decision threshold while the second technique directly builds an optimized pass-fail boundary by considering different costs to penalize test escapes and yield losses.Peer reviewe

    Cascade ΣΔ modulator with digital correction for finite amplifier gain effects

    Get PDF
    El pdf del artículo es la versión post-print.This paper presents a simple and fully digital solution to correct the effect of amplifier finite gain in cascade ΣΔ modulators. The main contribution of this letter is a simple digital method to evaluate the integrator pole errors, which are further taken into account to modify the reconstruction filter. The method is applied to a 2-1 cascade modulator.This work has been partially supported by the European Project SPRING no IST-1999-12342 and the Spanish CICYT TIC 2001-1594.Peer reviewe

    Low-cost digital detection of parametric faults in cascaded ΣΔ modulators

    Get PDF
    The test of SigmaDelta modulators is cumbersome due to the high performance that they reach. Moreover, technology scaling trends raise serious doubts on the intradie repeatability of devices. An increase of variability will lead to an increase in parametric faults that are difficult to detect. In this paper, a design-oriented testing approach is proposed to perform a simple and low-cost detection of variations in important design variables of cascaded SigmaDelta modulators. The digital tests could be integrated in a production test flow to improve fault coverage and bring data for silicon debug. A study is presented to tailor signature generation, with test-time minimization in mind, as a function of the desired measurement precision. The developments are supported by experimental results that validate the proposal.This work has been partially funded by the Junta de Andalucía project EXC/2005/TIC-927 and by the Spanish Government project TEC-2007-68072.Peer reviewe
    corecore